L'anàlisi de sentiments com a eina de garantia de qualitat en la formació de traductors: un estudi de cas pedagògic
##plugins.themes.bootstrap3.article.main##
Resum
Aquest article presenta un estudi de cas pedagògic sobre l'ús de l'anàlisi de sentiment com a eina de garantia de qualitat en la formació de traductors. L'exercici, dut a terme a la Universitat d'Alcal. (Espanya), va consistir en l'anàlisi del sentiment dels textos d'origen anglès i de les seves traduccions al castellà, centrant-se en coeficients de neutralitat que van des del -1 fins al +1. Els resultats van mostrar que l'anàlisi de sentiments ofereix un complement prometedor a l'avaluació de la qualitat tradicional, especialment per a textos políticament sensibles on la fidelitat tonal és crítica. Els estudiants van trobar que l'activitat era atractiva i útil per desenvolupar sensibilitat afectiva. Tot i que l'estudi es va limitar a una única cohort i es va basar en un model d'IA, els resultats donen suport a la incorporació de l'anàlisi de sentiments a l'educació de traductors. Amb més pràctiques, aquest mètode es podria transferir als fluxos de treball professionals, oferint als proveïdors de serveis lingüístics una eina addicional per garantir la coherència emocional i pragmàtica entre els textos d'origen i destinataris.
Descàrregues
##plugins.themes.bootstrap3.article.details##
Referències
Angelelli, Claudia V., & Baer, Brian James (Eds.). (2016). Researching Translation and Interpreting. Routledge. https://www.routledge.com/Researching-Translation-and-Interpreting/Angelelli-Baer/p/book/9781138849155
Bahdanau, Dzmitry, Cho, Kyunghyun, & Bengio, Yoshua. (2015). Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations (ICLR). https://arxiv.org/abs/1409.0473
Baker, Mona. (2006). Translation and Conflict: A Narrative Account. Routledge. https://www.routledge.com/Translation-and-Conflict-A-Narrative-Account/Baker/p/book/9780415371586
Banerjee, Satanjeev, & Lavie, Alon. (2005). METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization (pp. 65–72). https://aclanthology.org/W05-0909/
Biel, Łucja. (2011). Training translators or translation service providers? EN 15038:2006 and its training implications. The Journal of Specialised Translation, 16, 61–76. https://jostrans.org/issue16/art_biel.pdf
Castilho, Sheila, Gaspari, Federico, Moorkens, Joss, & Way, Andy. (2017). Is neural machine translation the new state of the art? The Prague Bulletin of Mathematical Linguistics, 108(1), 109–120. https://doi.org/10.1515/pralin-2017-0013
Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, & Toutanova, Kristina. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT (pp. 4171–4186). https://aclanthology.org/N19-1423/
Gómez-González, María Ángeles. (2021). Translation Quality Assessment: From Metrics to Practices. Routledge. https://doi.org/10.4324/9780429274743
Han, Liting, Smeaton, Alan F., & Jones, Gareth J. F. (2021). Translation quality assessment: A brief survey on manual and automatic methods. In Proceedings for the First Workshop on Modelling Translation: Translatology in the Digital Age (pp. 15–33). ACL. https://aclanthology.org/2021.mtdp-1.3/
House, Juliane. (1997). Translation Quality Assessment: A Model Revisited. Gunter Narr Verlag. https://www.narr.de/translation-quality-assessment-a-model-revisited-9783823340014
Hugging Face. (n.d.). Sentiment analysis. Hugging Face. Retrieved April 26, 2025, from https://huggingface.co/tasks/sentiment-analysis
Karakanta, Aljoscha, van Genabith, Josef, & Way, Andy. (2021). Measuring sentiment transfer in neural machine translation. Machine Translation, 35(3), 261–289. https://doi.org/10.1007/s10590-021-09264-0
Kim, Yoon. (2014). Convolutional neural networks for sentence classification. In Proceedings of EMNLP 2014 (pp. 1746–1751). https://aclanthology.org/D14-1181/
Liu, Bing. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
Liu, Yinhan, Ott, Myle, Goyal, Naman, Du, Jingfei, Joshi, Mandar, Chen, Danqi & Stoyanov, Veselin. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692. https://arxiv.org/abs/1907.11692
Munday, Jeremy. (2012). Evaluation in Translation: Critical Points of Translator Decision-Making. Routledge. https://www.routledge.com/Evaluation-in-Translation-Critical-Points-of-Translator-Decision-Making/Munday/p/book/9780415584894
Nida, Eugene A. (1964). Toward a Science of Translating: With Special Reference to Principles and Procedures Involved in Bible Translating. Brill. https://brill.com/view/title/15325
Pang, Bo, Lee, Lillian, & Vaithyanathan, Shivakumar. (2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of EMNLP 2002 (pp. 79–86). https://aclanthology.org/W02-1011/
Pang, Bo, & Lee, Lillian. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
Papineni, Kishore, Roukos, Salim, Ward, Todd, & Zhu, Wei-Jing. (2002). BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (pp. 311–318). https://aclanthology.org/P02-1040/
Ribeiro, Fernando. (2017). On the role of machine translation output in translator training: A preliminary study. Journal of Specialised Translation, 28, 129–152. https://jostrans.org/issue28/art_ribeiro.php
Rivera-Trigueros, Irene. (2022). Machine translation systems and quality assessment: A systematic review. Language Resources and Evaluation, 56, 593–619. https://doi.org/10.1007/s10579-021-09537-5
Saadany, Hossam, Orasan, Constantin, Mohamed, Ehab, & Tantawy, Ahmed. (2021). Sentiment-aware measure (SAM) for evaluating sentiment transfer by machine translation systems. arXiv preprint arXiv:2109.14895. https://arxiv.org/abs/2109.14895
Snover, Matthew, Dorr, Bonnie, Schwartz, Richard, Micciulla, Linnea, & Makhoul, John. (2006). A study of translation edit rate with targeted human annotation. In Proceedings of AMTA 2006 (pp. 223–231). https://aclanthology.org/2006.amta-papers.25/
Taboada, Maite, Brooke, Julian, Tofiloski, Milena, Voll, Kimberly, & Stede, Manfred. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/COLI_a_00049
Toral, Antonio. (2020). Insights from the application of machine translation quality evaluation at the document level. Machine Translation, 34(1–2), 1–27. https://doi.org/10.1007/s10590-020-09225-2